Twisted Lie group C-algebras as strict quantizations

نویسنده

  • N. P. Landsman
چکیده

A nonzero 2-cocycle Γ ∈ Z(g,R) on the Lie algebra g of a compact Lie group G defines a twisted version of the Lie-Poisson structure on the dual Lie algebra g∗, leading to a Poisson algebra C∞(g∗(Γ)). Similarly, a multiplier c ∈ Z (G, U(1)) on G which is smooth near the identity defines a twist in the convolution product on G, encoded by the twisted group C∗algebra C∗(G, c). Further to some superficial yet enlightening analogies between C∞(g∗(Γ)) and C ∗(G, c), it is shown that the latter is a strict quantization of the former, where Planck’s constant ~ assumes values in (Z\{0}) . This means that there exists a continuous field of C∗-algebras, indexed by ~ ∈ 0 ∪ (Z\{0}), for which A = C0(g ∗) and A = C∗(G, c) for ~ 6= 0, along with a cross-section of the field satisfying Dirac’s condition asymptotically relating the commutator in A to the Poisson bracket on C∞(g∗(Γ)). Note that the ‘quantization’ of ~ does not occur for Γ = 0. ∗Supported by a fellowship from the Royal Netherlands Academy of Arts and Sciences (KNAW)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connes-kreimer Quantizations and Pbw Theorems for Pre-lie Algebras

The Connes-Kreimer renormalization Hopf algebras are examples of a canonical quantization procedure for pre-Lie algebras. We give a simple construction and explanation of this quantization using the universal enveloping algebra for so-called twisted Lie algebras (Lie algebras in the category of symmetric sequences of k-modules). As an application, we obtain a simple proof of the (strengthened) ...

متن کامل

Lie Groupoid C∗-Algebras and Weyl Quantization

A strict quantization of a Poisson manifold P on a subset I ⊆ R containing 0 as an accumulation point is defined as a continuous field of C∗-algebras {Ah̄}h̄∈I , with A0 = C0(P ), a dense subalgebra Ã0 of C0(P ) on which the Poisson bracket is defined, and a set of continuous cross-sections {Q(f )} f∈Ã0 for which Q0(f ) = f . Here Qh̄(f ∗) = Qh̄(f )∗ for all h̄ ∈ I , whereas for h̄ → 0 one requires t...

متن کامل

A Groupoid Approach to Quantization

Many interesting C∗-algebras can be viewed as quantizations of Poisson manifolds. I propose that a Poisson manifold may be quantized by a twisted polarized convolution C∗-algebra of a symplectic groupoid. Toward this end, I define polarizations for Lie groupoids and sketch the construction of this algebra. A large number of examples show that this idea unifies previous geometric constructions, ...

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Lie bialgebra quantizations of the oscillator algebra and their universal R – matrices

All coboundary Lie bialgebras and their corresponding Poisson–Lie structures are constructed for the oscillator algebra generated by {N,A+, A−,M}. Quantum oscillator algebras are derived from these bialgebras by using the Lyakhovsky and Mudrov formalism and, for some cases, quantizations at both algebra and group levels are obtained, including their universal R–matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998